EXCHANGING SHARED STRATEGIES ON IMPROVING WATER AVAILABILITY

Scott Weeks

California Department of Food and Agriculture State Water Efficiency and Enhancement Program (SWEEP)

SWEEP BACKGROUND

"...to invest in irrigation and water pumping systems that reduce water use, energy use and greenhouse gas emissions."

- \$10 million: Emergency
 Drought Legislation Bill SB 103 signed by
 Governor Brown on March
 1, 2014
- **\$10 million:** AB 91 allocated additional funds March 27, 2015

- \$40 million: Budget Act of 2015, Item 8570-001-3228 (Chapter 321, Statutes of 2015) appropriate funds from the Greenhouse Gas Reduction Fund
- **\$7.5 million**: AB1613 (Chapter 370, Statutes 2016)

SWEEP AUTHORITY

Environmental Farming Act of 1995

Division 1, Part 1, Chapter 3, Article 8.5, Sections 560-568, Section 566 (a)

"The department shall establish and oversee an environmental farming program. The program shall provide incentives to farmers whose practices promote the well-being of ecosystems, air quality, and wildlife and their habitat"

PROJECT TYPES

Water conservation

Sensors for Irrigation Scheduling (weather, soil or plant based)

Micro-Irrigation or Drip Systems

GHG Reductions

Reduced Pumping

Fuel Conversion Improved Energy Efficiency Low Pressure Systems Variable Frequency Drives

Air Temperature sensors in SONATERA

Soil Moisture Data

Irrigation methods funded by SWEEP

Micro Sprinkler

Variable Frequency Drive (VFD)

QUANTIFICATION METHODOLOGY

 Applicants must establish a baseline water use and GHG emissions from the current system and project savings due to the project.

Example: Convert from flood to drip in almonds grown in sandy soil

Supporting documentation is required including:

- Energy bills
 Water Use Calculator Tool

 ARB GHG Calculator Tool
- Pump Tests

IMPACTS OF SWEED

\$61m awarded \$38m matching funds \$99m in economic impact

31 billion gallons of water saved 74,130 metric tons of Co2e

HOW TO IMPROVE WATER AVAILABILITY?

- Adding farm level water efficiencies will result in and increase in regional water availability
- Irrigation/water districts improve water delivery system
- Pressurized pipelines
 - Increases water and energy efficiencies in a region
 - Delivering pressurized water promotes water efficient practices like drip

BUILDING DYNAMIC WATER SOURCING SYSTEMS

- Some irrigation districts model their water delivery for flood irrigation – large delivery all at once
- Drip irrigation uses less water over a longer period
 - Many drip operations rely solely on ground water
 - Building an on farm reservoir to store surface water
 - Use ground water only when surface water is not available

Ground Water Recharge

Ground water can be effectively recharged when water is slowed, placed over a porous surface, and spread out.

Recharge basin

Orchard flooding for recharge

ALTERNATIVE SOURCES OF WATER

- Non-potable recycled water
 - Waste water is treated to standards and use for irrigation
- Desalination
 - Most useful in coastal areas with large populations
 - Atmospheric water extraction
 - Currently low water yield

THANK YOU!

Scott Weeks

Scott.weeks@cdfa.ca.gov

https://www.cdfa.ca.gov/oefi/sweep/